Closed toed shoes and goggles are REQUIRED for the lab

Chem. 111 Experiment 6 October 15th – 19th

Experiment 6. Gravimetric Analysis: The Determination of Phosphorus in Plant Food

Adapted from "Laboratory Experiments", J.H. Nelson and K.C. Kemp, Prentice-Hall, 2000.

Reading: Understand Chapter 3 of "Chemistry, the Central Science"

Background

Gravimetric analysis is a quantitative (*i.e. how much?*) method of classical analysis. The element to be determined is isolated in a solid compound of known identity and definite composition. The mass of the element that was present in the original sample can be determined from the mass of this compound. Plant foods contain three essential nutrients that are not readily available from soils. These are soluble compounds of nitrogen, phosphorus, and potassium. A typical label on a plant food will have a set of numbers such as 15-30-15. These numbers mean that the plant food is guaranteed to contain at least 15% nitrogen, 30% phosphorus (expressed as P_2O_5) and 15% potassium (expressed as K_2O). The remaining of the product is fillers, dyes and other anions and cations to balance the charge in the chemical compounds. In this experiment, we will illustrate a quality control analysis for the determined by precipitation of the insoluble salt magnesium ammonium phosphate hexahydrate according to the reaction:

 $5H_2O(l) + HPO_4^2(aq) + NH_4^+(aq) + Mg^{2+}(aq) + OH^-(aq) \rightarrow MgNH_4PO_4.6H_2O(s)$

The % P and % P_2O_5 in the initial sample can be calculated from the mass of MgNH₄PO₄·6H₂O obtained using the following method:

mass of MgNH₄PO₄·6H₂O \rightarrow moles of MgNH₄PO₄·6H₂O \rightarrow moles of P \rightarrow mass of P \rightarrow %P and mass of MgNH₄PO₄·6H₂O \rightarrow moles of MgNH₄PO₄·6H₂O \rightarrow moles of P \rightarrow moles of P₂O₅ \rightarrow mass of P₂O₅ \rightarrow %P₂O₅

Procedure

Prepare 2 samples per group as directed below. Rinse all your glassware thoroughly with water before using.

1. Weigh by difference, to the second decimal point, 3.00 to 3.50 g of your unknown sample using a weighing dish. Record the sample mass in your notebook. Remember to record all digits on the balance.

2. Transfer your sample to a 250-mL beaker and add 35 to 40 mL of distilled water and stir the mixture with a glass stirring rod to dissolve the sample. They may be a small amount of insoluble residue. If your sample does not dissolve completely, remove the insoluble material by filtration.

3. Add 45 mL of 10% MgSO₄ 7H₂O solution to the filtrate. Then add approximately 150 mL of 2M NH₃ slowly while stirring. A white precipitate of MgNH₄PO₄ 6H₂O will form. Allow the mixture to sit at room temperature for 15 minutes to complete the precipitation.

4. Prepare a vacuum filtration apparatus using a buchner funnel. Obtain one filter paper for each one of your samples, weigh them and record their mass in your notebook (label them with a pencil to be able to differentiate them later).

5. Wet the paper with distilled water to hold it in place in the funnel. Transfer **all** the solution and the precipitate from the beaker using a rubber policeman. Wash the precipitate with two or three 5-mL portions of distilled water. Do this by adding each portion to the beaker in which you did the precipitation to transfer any remaining precipitate; then pour over the solid in the funnel. Finally, pour two 10-mL portions of 75% isopropyl alcohol through the filter paper.

6. When all the liquid has gone through, disconnect the hose and turn the water off. Carefully remove the filter paper with the precipitate and place on a marked paper towel. Blot your samples dry with a second paper towel. Discard the filtrate down the sink.

7. When the MgNH₄PO₄[•]6H₂O precipitate is thoroughly dry, weigh the filter papers with precipitate. Be careful not to lose any of the solid. Record their masses. Record your group data on the computer provided by your lab instructor. This class data will be available on-line for use in the discussion section.

	Sample 1	Sample 2
Mass of Sample		
Mass of filter paper and MgNH ₄ PO ₄ ·6H ₂ O		
Mass of filter paper		
Mass of MgNH ₄ PO ₄ [·] 6H ₂ O		
Mass of P in original sample		
% P in sample		
% P ₂ O ₅ in sample		
Average % P ₂ O ₅		

Data Prepare the following table:

Closed toed shoes and goggles are REQUIRED for the lab

<u>Results</u>

Show your calculations for mass of P, %P and % P_2O_5 in samples.

Discussion

Compare the $%P_2O_5$ that you calculated for your sample to the value of the label. Are they in good agreement? If they are not, explained what could have gone wrong in your procedure. How can we improve this analysis for future trials. Discuss any trends you see in the class data, how do your results compare?

Questions

1. The label on a plant food reads 23-19-17. What does this mean? What is the minimum percentage of potassium in this plant food? What is the minimum percentage of phosphorus in this plant food?

2. MgNH₄PO₄ $^{\circ}$ 6H₂O has a solubility of 0.023g/100 mL in water. Suppose a 5.02- g sample were washed with 20 mL of water. What fraction of the MgNH₄PO₄ $^{\circ}$ 6H₂O would be lost?

3. MgNH₄PO₄·6H₂O loses H₂O stepwise as it is heated. Between 40°C and 60°C the monohydrate (MgNH₄PO₄·H₂O) is formed and above 100°C the anhydrous material (MgNH₄PO₄) is formed. What are the phosphorus percentages of the monohydrate and anhydrous material?

4. Ignition of MgNH₄PO₄ $^{\circ}$ 6H₂O produces NH₃, H₂O and magnesium pyrophosphate, Mg₂P₂O₇. Complete and balance the equation for this reaction. If 5.00 g of MgNH₄PO₄ $^{\circ}$ 6H₂O are ignited, how many grams of Mg₂P₂O₇ would be formed?

 $2 \text{ MgNH}_4\text{PO}_4\text{ }^{\circ}\text{6H}_2\text{O} (g) \xrightarrow{\text{heat}}$